Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 168: 346-360, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393969

RESUMO

Peritoneal metastasis (PM) is a fatal state of colorectal cancer, and only a few patients may benefit from systemic chemotherapy. Although hyperthermic intraperitoneal chemotherapy (HIPEC) brings hope for affected patients, the drug development and preclinical evaluation of HIPEC are seriously lagging behind, mainly due to the lack of an ideal in vitro PM model that makes drug development over-reliant on expensive and inefficient animal experiments. This study developed an in vitro colorectal cancer PM model [microvascularized tumor assembloids (vTA)] based on an assembly strategy of endothelialized microvessels and tumor spheroids. Our data showed that the in vitro perfusion cultured vTA could maintain a similar gene expression pattern to their parental xenografts. Also, the drug penetration pattern of the in vitro HIPEC in vTA could mimic the drug delivery behavior in tumor nodules during in vivo HIPEC. More importantly, we further confirmed the feasibility of constructing a tumor burden-controlled PM animal model using vTA. In conclusion, we propose a simple and effective strategy to construct physiologically simulated PM models in vitro, thus providing a basis for PM-related drug development and preclinical evaluation of locoregional therapies. STATEMENT OF SIGNIFICANCE: This study developed an in vitro colorectal cancer peritoneal metastasis (PM) model based on microvascularized tumor assembloids (vTA) for drug evaluation. With perfusion culture, vTA could maintain a similar gene expression pattern and tumor heterogeneity to their parental xenografts. And the drug penetration pattern in vTA was similar to the drug delivery behavior in tumor nodules under in vivo treatment. Moreover, vTA was more conducive to construct PM animal models with controllable tumor burden. In conclusion, the construction of vTA could provide a new strategy for the PM-related drug development and preclinical evaluation of locoregional therapies.


Assuntos
Neoplasias Colorretais , Hipertermia Induzida , Neoplasias Peritoneais , Humanos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/secundário , Neoplasias Colorretais/terapia , Terapia Combinada , Avaliação de Medicamentos
2.
Org Lett ; 23(20): 7776-7780, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34617759

RESUMO

Herein we present a transition-metal-free cross-coupling reaction of isatogens with boronic acids through a 1,4-metalate shift of a boron "ate" complex. This coupling reaction provides a feasible method to deliver valuable 2,2-disubstituted indolin-3-one derivatives with excellent regioselectivity, which exhibit operational simplicity, good functional group tolerance, and a broad substrate scope.

3.
Org Lett ; 22(20): 7874-7878, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32990445

RESUMO

An important framework of o-amino benzofuranthioethers was constructed by Cu-catalyzed arylative cyclization of N-tosylhydrazone-bearing thiocarbamates with silylaryl triflates or ArI. This transformation provides a novel strategy for the synthesis of valuable arylative o-amino benzofuranthioethers in moderate yields which could not be obtained from known methods. The reaction features smart design, efficient construction, and mild reaction conditions.

4.
Angew Chem Int Ed Engl ; 59(8): 3294-3299, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31782876

RESUMO

A new chiral Brønsted acid, generated in situ from a chiral phosphoric acid boron (CPAB) complex and water, was successfully applied to asymmetric indole reduction. This "designer acid catalyst", which is more acidic than TsOH as suggested by DFT calculations, allows the unprecedented direct asymmetric reduction of C2-aryl-substituted N-unprotected indoles and features good to excellent enantioselectivities with broad functional group tolerance. DFT calculations and mechanistic experiments indicates that this reaction undergoes C3-protonation and hydride-transfer processes. Besides, bulky C2-alkyl-substituted N-unprotected indoles are also suitable for this system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...